Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We survey the opportunities offered by the detection of the forward muons that accompany the creation of neutral effective vector bosons at a muon collider, in different kinematic regimes. Vectors with relatively low energy produce the Higgs boson and the extended muon angular coverage enables studies of the Higgs properties, such as the measurement of the inclusive production cross section and the branching ratio to invisible final states. New heavy particles could be produced by vectors of higher energy, through Higgs portal interactions. If the new particles are invisible, the detection of the forward muons is essential in order to search for this scenario. The angular correlations of the forward muons are sensitive to the quantum interference between the vector-boson helicity amplitudes and can be exploited for the characterization of vector-boson scattering and fusion processes. This is illustrated by analyzing the properties of the Higgs coupling to the boson. Our findings provide a physics case and a set of benchmarks for the design of a dedicated forward muon detector. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            We explore the sensitivity of future hadron colliders to constrain the fermionic Higgs portal, with a focus on scenarios where the new fermions cannot be directly observed in exotic Higgs decays. This portal emerges in various models including twin-Higgs scenarios and dark matter models, posing significant challenges for collider tests. Working in an effective field theory (EFT), we determine the reach of the high-luminosity option of the Large Hadron Collider (HL-LHC), the high-energy upgrade of the LHC (HE-LHC) and a proposed Future Circular Collider (FCC) in probing the fermionic Higgs portal through off-shell and double-Higgs production. Notably, we find that quantum-enhanced indirect probes offer a better sensitivity than other direct Higgs measurements. We argue that this finding is valid in a wide class of ultraviolet realisations of the EFT. Our study presents a roadmap of a multifaceted search strategy for exploring the fermionic Higgs portal at forthcoming hadron machines.more » « less
- 
            A<sc>bstract</sc> We investigate the dynamics responsible for generating the potential of theη′, the (would-be) Goldstone boson associated with the anomalous axial U(1) symmetry of QCD. The standard lore posits that pure QCD dynamics generates a confining potential with a branched structure as a function of theθangle, and that this same potential largely determines the properties of theη′once fermions are included. Here we test this picture by examining a supersymmetric extension of QCD with a small amount of supersymmetry breaking generated via anomaly mediation. For pure SU(N) QCD without flavors, we verify that there areNbranches generated by gaugino condensation. Once quarks are introduced, the flavor effects qualitatively change the strong dynamics of the pure theory. ForFflavors we find |N − F| branches, whose dynamical origin is gaugino condensation in the unbroken subgroup forF < N –1, and in the dual gauge group forF > N+ 1. For the special cases ofF=N –1,N,N+ 1 we find no branches and the entire potential is consistent with being a one-instanton effect. The number of branches is a simple consequence of the selection rules of an anomalous U(1)Rsymmetry. We find that theη′mass does not vanish in the largeNlimit for fixedF/N, since the anomaly is non-vanishing. The same dynamics that is responsible for theη′potential is also responsible for the axion potential. We present a simple derivation of the axion mass formula for an arbitrary number of flavors.more » « less
- 
            A bstract We present a novel construction for a Higgs-VEV sensitive (HVS) operator, which can be used as a trigger operator in cosmic selection models for the electroweak hierarchy problem. Our operator does not contain any degrees of freedom charged under the SM gauge symmetries, leading to reduced tuning in the resulting models. Our construction is based on the extension of a two Higgs doublet model (2HDM) with a softly broken approximate global D 8 symmetry (the symmetry group of a square). A cosmic crunching model based on our extended Higgs sector has only a percent level tuning corresponding to the usual little hierarchy problem. In large regions of parameter space the 2HDM is naturally pushed towards the alignment limit. A complete model requires the introduction of fermionic top partners to ensure the approximate D 8 symmetry in the fermion sector. We also show that the same extended Higgs sector can be used for a novel implementation of the seesaw mechanism of neutrino masses.more » « less
- 
            A bstract We study the renormalization group of generic effective field theories that include gravity. We follow the on-shell amplitude approach, which provides a simple and efficient method to extract anomalous dimensions avoiding complications from gauge redundancies. As an invaluable tool we introduce a modified helicity $$ \tilde{h} $$ h ˜ under which gravitons carry one unit instead of two. With this modified helicity we easily explain old and uncover new non-renormalization theorems for theories including gravitons. We provide complete results for the one-loop gravitational renormalization of a generic minimally coupled gauge theory with scalars and fermions and all orders in M Pl , as well as for the renormalization of dimension-six operators including at least one graviton, all up to four external particles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
